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Using a simple dynamic model, the growth of rigidity and of the mean size of the polymer chain induced 
by a chemical reaction irreversibly fixing extended conformations of units has been investigated. When 
the reaction rate is controlled by the rotational diffusion of segments, the change in the mean length of a 
rigid segment and mean radius of gyration of the chain with time are described by power dependencies. 
For a macromolecule in a constant viscosity medium, the time needed to complete the reaction (i.e. to 
transform the coil into an extended rigid rod) is tcomp ~ N 3, where N is the initial number of segments in 
the chain. The cases of a kinetically controlled reaction and a mixed type of reaction have also been 
considered. The slowing down of the reaction caused by increasing the viscosity of the reaction medium 
has been evaluated, giving teornp~ N 7. 
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I N T R O D U C T I O N  

Uncoiling of a macromolecule as a result of increasing 
its effective rigidity can be involved in a variety of 
phenomena occurring in polymer systems. It may be 
caused by a chemical reaction irreversibly fixing the 
extended conformations of the statistical units. Some 
examples are the imidization of some polyamidoacids 
producing polyarimides without hinge atoms I or the 
elimination reactions in substituted polymers (poly(vinyl 
alcohol), poly(vinyl chloride) etc.) leading to double bond 
formation. A macromolecule capable of undergoing the 
'helix-coil transition will uncoil when placed in a 
spiralizing solvent. If the process occurs far beyond the 
helix-coil transition point, it is possible to neglect the 
effect of the reverse despiralization reaction and to 
consider chain uncoiling as irreversible. A similar picture 
may also be observed when the polymer system passes 
from the isotropic to the nematic phase. Recently, a 
coil-to-rod transition in polydiacetylenes was reported 
to occur with the change in solvent quality 2. In all these 
cases, provided the stiffening process is not accompanied 
by collapsing or aggregation of chains, the mechanisms 
of chain uncoiling and consequently the main features of 
large scale dynamics should be basically the same. 

The purpose of this paper is to describe the time 
dependence of the mean length of the rigid segment and 
mean-square radius of gyration of the chain and to 
establish the molecular weight dependence of character- 
istic times of the chain uncoiling process. 

D ESCR IP TION OF THE M O D E L  

The present work considers a simple dynamic model for 
a macromolecule undergoing irreversible uncoiling 
induced by a chemical reaction, see Figure 1. A 
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macromolecule of contour length L in a homogeneous 
viscous medium is considered. Initially it consists of N 
freely jointed segments ( N > I ) .  A chemical reaction 
occurs in the macromolecule resulting in the immobiliza- 
tion of the extended conformation of two adjacent 
segments and in locking the joint between them. The 
reaction can proceed when two segments adopt the 
extended conformation in the course of their Brownian 
motion, and this implies that the angle 0 between these 
segments is smaller than a certain predetermined value: 

0~<A0 (1) 

After the reaction has taken place at a given location, 
this pair of segments remains in a completely extended 
conformation and is treated as a single rigid segment of 
summary length. We consider first the simple case when 
the macromolecule is an ideal Gaussian coil without 
volume interactions. In the initial state, its mean-square 
radius of gyration is given by: 

Coil 

/ 

Figure 1 
rigidity 
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where A 0 = L/N is the initial segment length. The reaction 
stops completely when the macromolecule is transformed 
into an extended stiff rod with the radius of gyration: 
Rro d = 1/x/12L; Rro,/Ro = (N/2) '/2. 

We will investigate the time dependence of both local 
and global chain characteristics, namely the mean length 
of rigid segments A(t) averaged along the chain and the 
non-equilibrium radius of gyration R(t). The mean 
segment length A(t) can be expressed as: 

A(t) = (~(t)l+ tiff)+ 1 ) ( ~ _ ( 1 )  
Ak(t) = L  (3) 

1 R=I t)-+ 

Here {"]k} and h are stochastic dynamic variables giving 
the instantaneous lengths of all the segments and the 
number of flexible joints, correspondingly, and ( . . . )  
denotes averaging over the stochastic configuration 
space trajectories as well as over random initial 
conformations of the coil. We will use the approximation 
in which ((h(t) + 1)- 1) ~ (h(t) + 1)- 1 ~ (h(t))- 1, so that 
A(t) = L/n(t), n(t) being the mean number of flexible joints 
at time t from the reaction start. 

KINETIC EQUATIONS 

Treating the problem rigorously one can begin by stating 
that the probability dPi(t ) for the reaction to occur at 
the ith joint in the time interval t, t+dt is given by: 

dPi(t)=[1-Pi(t)]W~dt, i=1 . . . . .  N - 1  (4) 

where [1-Pi(t)] is the probability that the ith joint 
remains flexible by time t and W~ is the corresponding 
reaction rate. Generally W~ depends on all the details of 
the chain conformation, particularly on the actual 
sequence of rigid segment lengths along the chain, at the 
moment t. Thus closing of the set of equations (3) would 
require the detailed analytical description of internal 
dynamics for the chain consisting of rigid segments, which 
is far beyond the capability of present theory. 

In order to obtain the analytical solution of the 
problem a simplified approach is used. Summing 
equation (4) over i and noting that: 

N - 1  

Y, El-P,(03 
i = 1  

gives the average number of flexible joints n(t) at the 
moment t from the reaction start, we obtain: 

dn(t) 
- n ( t ) W  (5) 

dt 

where 

W =  [ 1 - e , ( t  ~ W~[1 -P , ( t ) ]  
~ . i = 1  i = 1  

is the average reaction rate at time t. We assume that W 
depends only on the average chain characteristics A(t) 
and R(t). To evaluate this dependence we consider a 
reference chain consisting of identical rigid segments of 
the same length A(t), their number being n(t)=L/A(t). 
With the course of the reaction, the number of flexible 
joints in the reference chain decreases, whereas the length 
of each rigid segment increases. The accuracy of this 
approximation will be evaluated below when the 
analytical solution is compared with the results of 
computer simulation. 

First, a diffusion-controlled reaction will be con- 
sidered. In this case, W is the average rate at which two 
neighbouring segments adopt the extended conformation 
as a result of mutual rotational diffusion. It can be shown 
that for a diffusion-controlled reaction the rate W 
depends logarithmically on the parameter AO (see 
equation (1)) under the condition AO< 1. For the freely 
jointed chain, in the equilibrium coiled state we have: 

kT 
W ~ "trot 1 . . . . .  

qA 3 

and hence 

W(t) = w o (6) 

where T is the temperature, k is the Boltzmann's 
constant, Zrot is the characteristic time of the rotational 
diffusion of a rigid rod of length A, t/is the local viscosity 
of the medium and w o is the initial reaction rate at t = 0. 

Initially, the coil has the equilibrium size R o (see 
equation (2)). Subsequently, the length of the rigid 
segment increases and so does the equilibrium (or to be 
more precise, quasi-equilibrium) mean value: 

Req(t)=[16n(t)A2(t)l 1/2 (7) 

so that the non-equilibrium value of the radius of gyration 
R(t) becomes lower than Req. Since the coil is in the 
non-equilibrium state with R < Req, the reaction rate W 
generally depends on R. It may be shown that for a 
compressed coil, e.g. by external field, the value of Zro t 
remains virtually invariable with decreasing R/Req while 
R>>A. However, when the radius of gyration of chain 
approaches that of a single rigid segment 

1 
rs= xfl2A 

(this situation corresponds to a completely folded 
chain conformation) the probability of the appearance 
of stretched conformations of neighbouring segments 
should drastically decrease. In order to take this effect 
into account, an additional cutting-off factorf(A/R) will 
be introduced into the expression for W having the 
following properties: f ~ 1 if A << R and f--+ 0 if R --* r s. Its 
specific form is not important since, as will be shown 
below, A(t) never tends to exceed R(t) so tha t f i s  always 
of the order of unity. 

During the entire reaction, the coil is in the 
non-equilibrium compressed state. As a result, a driving 
force appears which tends to expand the coil. to the 
dimension Req. This force is due to the increase AF in 
the free energy of a compressed coil compared to its free 
state (see discussion in ref. 3). For chains without volume 
interactions AF is of purely entropic nature and under 
the condition R<<Req it is given by: 

AF = ?kT + In (8) 
R e q  

where ? is the numerical coefficient of the order unity 4. 
The evolution of the average radius of gyration R of 

the coil in the simplest approximation, when R is treated 
as an independent dynamic variable 5'6 is governed by 
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the equation: 

~dR t~AF 
~ -  + OR- +0  (9) 

where ~ is a friction coefficient related to the large scale 
expansion of the coil as a whole. In order to evaluate (, 
a free draining model and a completely non-draining 
model for the coil will be considered. In the case of a 
draining coil, which occurs for relatively concentrated 
solutions or melts under the condition that the 
entanglement network is not yet manifested, the friction 
coefficient ( is proportional to qL and is independent of 
chain conformation. 

In the case of a non-draining coil (the chain in a dilute 
solution) according to Stokes equation, the friction 
coefficient is proportional to the coil size ~ ~ fiR. 

Finally, the evolution of the mean number of flexible 
joints in the chain n(t), and its radius of gyration R(t)  is 
described by a system of equations: 

dn [Aon'~ 3 [ A \  
d t -  n w ° t ~  ) f t R )  (10) 

d R  = 2k T7~ - 1R-  1 1 d~- ~ - (11) 

In order to obtain an analytical solution, two assump- 
tions will be made, the self-consistency of which is 
confirmed by the analysis of the solution. 

(a) At any time, except a small initial interval, R2<< R2q, 
so that it is possible to neglect unity in equation (11). 
in comparison with L2/6nR 2-- Req/R2 2. 

(b) The f a c t o r f ( A / R )  changes little with time and may 
be considered to be a constant of the order of unity. 

It should be noted that both equations (10) and (11) and 
conditions (a) and (b) are valid only when n>> 1, i.e. they 
do not describe the latest reaction stage in which the 
number of chain segments becomes small. 

If the above assumptions are taken into account, 
equations (10) and (11) are simplified to: 

dn 
-- _ w o f N - 3 n 4  

dt 

= f lwoN-  3Ln-  1 

(12) 

(13) 

where fl is the numerical coefficient of the order of unity, 
p = 0 for a draining coil and p = 1 for a non-draining coil. 
Equation (12) is easily integrated to give the dependence 
n(t) which is used for the solution of equation (13). The 
solution of equations (12) and (13) for the initial 
conditions n/t = o = N;  R/t = o = Ro is given by: 

n(t) = N(1 + 3fwot) 1/3 (14) 

{ ( ~ ) 4  +p fl(4+p) 
R ( t ) = L  -t 4 f  

1/(4 + p) 
x N-4[(1 + 3 fwoT)  #/3 -- 1]~ (15) 

) 

ANALYSIS OF THE SOLUTION 

It follows from equation (14) that the number of segments 
in the chain begins to decrease markedly starting with 

time t of the order of Wo 1 ~ Trot (local relaxation time of 
the initial chain segment). In the entire time range from 
Wo i to the end of the reaction, the number of flexible 
joints exhibits a power law dependence on time 
n, , ,N(wot ) - l /3 .  The mean length of the rigid segment 
increases with time as A(t),,~Ao(wot) 1/3 (see Figure 2). 

The dynamics of change in the radius of gyration R 
exhibit two stages, each being relatively long compared 
to the characteristic time scale w o 1. At times t smaller 
than a certain value ZR, the first term in equation (15) is 
dominant, and in this time range the relative change in 
R is small: R ( t ) = R  o. The value of ZR scales as: 

T R ~ W 0 t N [ 3 ( 4 - P ) ] / 8  (16)_ 

For a draining coil, we obtain "~R'~N a/E, and for a 
non-draining coil, we have ZR ~ N 9Is. 

Beginning from the time t"~ZR the second term in 
equation (14) dominates, and in this case R has a power 
law time dependence: 

R(t), ,~AoN1/5(Wot) 4/ls for a non-draining coil 

R(t )~Ao(wot) l /3 , ,~A( t )  for a draining coil. 

The crossover between two dynamic regimes of changes 
in R takes place at t ~ ZR- 

The time of completion of the reaction teomp , when the 
chain is completely uncoiled (A acquires the order of L), 
is proportional to the cube of the initial number of chain 
segments: tcomp ~ W O 1N3 .  

The time dependences of the mean segment length A, 
of the non-equilibrium radius of gyration R, and of the 
equilibrium mean value of the radius of gyration Req for 
a chain with the given segment length A are compared 
in Figure 2. It is clear that the assumption that R << Req 
made for the simplification of kinetic equations is valid 
for N>>I in the time r a n g e  Wol<<t<<teomp. At t < l :  R we 
have 2 2 R /Req ~ (Wot)- 1/3, and at ZR < t we have 

In the range t~ZR, the difference between Re~ and R 2 is 
at a maximum and is: 

2 2 - ( 4 - p ) / 1 6  R /Req ~ N 

/V . . . . . . .  

N l l 2  • - - I ', 
J i ,, 

I i 

i I 

, J , i  , 1 
1 N N 2 N 3 

t 

Figure 2 Time dependence of chain rigidity and size for the case of a 
diffusion-controlled reaction. Curve 1, mean length of a rigid segment 
A; curve 2, equilibrium mean-square radius of gyration R=q for a chain 
of given segment length A; curves 3 and 4, non-equilibrium mean radius 
of gyration for the cases of non-draining and free-draining chains, 
respectively. Values having the dimensionality of length are referred to 
A 0 and time is referred to w o t. Scale on both axes is logarithmic 
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The ratio of the radius of gyration R to the segment 
length A also satisfies the assumption made above. Even 
when the cutting-off factor in equation (12) is absent, the 
ratio A/R always remains small, A/R<<I, and corre- 
spondingly f ~- 1, except for the case of a free-draining 
coil at t > z R. In this case, the ratio A/R remains a constant 
of the order of unity and may be self-consistently 
determined from equations (14) and (15) for any 
particular form of the cutting-off factor f (A/R).  

COMPARISON WITH RESULTS OF COMPUTER 
SIMULATION 

In order to verify the validity of the assumption that the 
kinetics of the reaction can be described by a single 
time-dependent reaction rate (see equations (5) and (6)) 
an attempt has been made to perform computer 
simulation on the basis of a more rigorous approach. 
The main point of the simulation was to account for the 
distribution of segment lengths which appear in the 
course of the reaction resulting in a spectrum of local 
reaction rates. 

Starting from equation (4), we note that, for a 
diffusion-controlled reaction, W~ is the rate of local 
rearrangement of ith and (i+ 1)th segments adjacent to 
the ith joint. In the simplest approximation, W~ depends 
only on the properties of ith and (i + 1)th segments, the 
effect of more distant neighbours being neglected: 

1 1 
Wi~ ,.(i) + ~.(i+ i) 

~rot ~rot 

Hence, we have 

l/A°3 /1°3 / 
w,= Wo + (17) 

A3+ 1 /  

where Ai is the length of ith segment at time t, z~ t is the 
characteristic time of its rotational diffusion. 

The kinetics of the increasing chain rigidity described 
by equations (4) and (17) were simulated by the Monte- 
Carlo method. The spatial motion of chain segments and 
the resulting change in the chain radius of gyration were 
not considered. In the initial state, the chain consisted 
of N = 200 segments of length A o = 1. The reaction was 
followed sequentially, with a time step At. During one 
step each pair of neighbouring segments could be united 
into a single segment (its length being a sum of their 
lengths) with the probability APi = 1 -  exp(-W~At). The 
step was chosen to be sufficiently small to neglect the 
probability of uniting three or more neighbouring 
segments simultaneously. The simulation was over when 
all the segments became a single rigid segment of the 
length A -- NA. The time dependence of the mean segment 
length A (t) was averaged over 100 random 'trajectories'. 

Over almost the entire time range, w o 1 < t < tcomp, the 
dependence A(t) is adequately approximated by the 
power function A(t)=Ao(3fvt) 1/3 with the exponent 1/3 
derived from the analytical theory (Figure 3). The effective 
frequency ~ is found to be higher than w o, with fv/w o ~ 3. 
For a pair consisting of a short and a long segment, the 
rate of conformational rearrangement is mainly deter- 
mined by the mobility of the short segment, rather than 
by that of a segment of mean length. This result may be 
illustrated taking as an example a pair of segments with 
a fixed mean length. For identical segments we have 
W =  wo(Ao/A) 3 and for segments of lengths A(1 + 6) and 

A(1-b )  we have W=~v(Ao/A) where: 

[ l  ' l  
# = W o  2 ( 1 + 6 ) 3  + 2 ( 1 - - 5 ) 3  

The ratio ~v/w o = 3 is obtained at 6 =0.43, which gives 
the estimate of the width of the segment length 
distribution appearing in the chain model under 
consideration. 

Hence, the analytical theory based on the approxi- 
mation of the equal segment lengths gives the correct 
description of the character of the kinetics of increasing 
rigidity. The segment length distribution appearing in 
the chain during the reaction leads only to the 
renormalization of the initial reaction rate. 

GENERALIZATIONS OF THE MODEL 

The simple model suggested in this work assumes several 
natural generalizations, some of which are described 
below. 

Chain in a good solvent (evaluation of excluded volume 
effects) 

The kinetics of the reaction are described by equation 
(10), but the equation of motion of the chain radius of 
gyration changes. Using Flory's method 4,v we can 
represent the coil free energy as 

AF = AF o + AFc (18) 

where the entropy contribution AF0 under the conditions 
R<<Req is described by equation (8). 

The energy of pair interactions of segments in the mean- 
field approximation, AFc is given by AFt = ½kTnZa3eR- 3 
where a is the chain thickness (it will be assumed that 
a=Ao),  and e = ( T - O ) / T  is the parameter of the 
thermodynamic quality of the solvent proportional to 
the deviation from the 0 temperature. The contribution 
of ternary interactions at R>~R o is small. In this 
approximation, AF~ is independent of the mean segment 
length A. The equation of motion for R becomes: 

) ,,>,ol d R _  k r  27 - 1  + (19) 
dt r/R 2 ~ 2 R W - J  

2 "S 

0 2 4 6 8 

Ig (Wo t) 

Figure 3 Time dependence of the mean length of a rigid segment. 
Curve 1, Monte-Carlo simulation (N = 200); curve 2, analytical theory. 
Values having the dimensionality of length are referred to Ao and 
time is referred to Wo 1 
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N 

N315 2 I ~  
. . . .  _ ____ 

/ 4 ,  
1 

1 N "rR N 2 N 3 

Figure 4 Time dependence of chain rigidity and size for a chain with 
excluded volume interactions (parameter of solvent quality e ~ 1). Curve 
1, A(t); curve 2, R(t); curve 3, the dependence R(t) for an ideal chain 
given for comparison. Values having the dimensionality of length are 
referred to A0 and time is referred to Wo 1 

Here the hydrodynamic model for the non-draining coil 
is used. 

The expanding force related to volume interactions 
will dominate if: 

eAo 1 

R n 

In the framework of the Flory method used we have 
R o ~_ AoeX/SN 3/5. Taking into account equation (14) one 
can see that this force dominates only at t<t* ,  where 
t*,,~wolel2/SN 6/5. During this time R cannot change 
greatly: R(t*)~-Ro, since characteristic time zR of the 
global chain swelling for a non-draining chain is given 
by ZR"~Wolg3/4N3/2>>t *. At t>>t*, the evolution of R is 
governed by the entropic force, just as in the case of an 
ideal chain (Figure 4). 

The free energy of the chain in the presence of 
excluded volume interactions may be determined more 
rigorously a'9. It is known that there are different regimes 
in the temperature-concentration diagram for semi- 
flexible chains. For sufficiently flexible chains in good 
solvent, free energy per chain is given by scaling theory 
formula: 

/ A  \s/4 AF=R3q)9/4(~)3/a,.~N9/4~-~) F,3[aR-15/4 (20) 

where tp = Na3/R 3 is the mean volume fraction of units 
in the coil. In the case of poorer solvents and stiffer chains 
the free energy of the coil is given adequately by the 
mean-field approximation in equation (18). The cross- 
over from the scaling to the mean-field regime takes place 
at: 

a 

In our case we start from the flexible chain, its free 
energy being given by equation (20). If this relation held 
for the chain under consideration through the entire 
reaction time, excluded volume interactions would 
determine essentially the expansion rate giving the 
characteristic time z , ~  N36/251312/25. However, the mean 
length of rigid segment exceeds the value of Ao(e/qg) 1/3 
much earlier (beginning from t ~ n4/Se a/s) and thereafter 

the mean-field approximation for the free energy of the 
coil is adequate. Thus we come again to the estimates 
t*~Wole~2/sNr/5; ZR'~wote3/4N3/2>>t * and conclude 
that excluded volume interactions do not significantly 
alter the dynamics of coil expansion. 

Consequently the change in solvent quality (or in 
temperature at T~> 0) should lead only to small changes 
in the character of the irreversible chain uncoiling. 

Kinetically controlled reaction 
The reaction leading to increasing chain rigidity is 

diffusion controlled if the rate constant K of the chemical 
reaction fixing the extended position of the neighbouring 
segments (provided they have adopted suitable con- 
formation given by equation (1)) obeys the condition 1/4 
(AO)2K>>wo . The factor 1/4 (A0) 2 at A0<< 1 represents the 
equilibrium fraction of segments in the extended confor- 
mation. In the opposite case, when K¢-  1/4 (A0)2K << w o, 
the reaction, at least initially, is kinetically controlled. 

Let w o >> K¢ >> woN-  3. Then a characteristic segment 
size A*= Ao(wo/K¢) 1/3 exists, so that Kc = wo(Ao/A*) 3. 

Chain uncoiling follows two-stage kinetics. In stage 1, 
the reaction is kinetically controlled and is described by 
the equation: 

dn 
- K~n (21) 

dt 

where K¢ is independent of time. The number of 
flexible joints in the chain decreases exponentially, 
n ( t ) = N e x p ( - K j ) ,  until it obtains the value of 
n* = N(K~/wo) 1/3. Subsequently at: 

t > ~ t , = l K -  ~ ln(WO'~ 
3 ¢ \ K J  

the character of the reaction changes. In stage 2 it 
becomes diffusion controlled and is described by equation 
(12) with the initial condition n(t*)= n*. 

The analysis of the solution of kinetic equations gives 
the following results. For brevity, only the case of an 
ideal non-draining chain will be considered. If zc<zR 
where zc = 1/Kc then the kinetically controlled reaction 
stage does not affect the dynamics of changes in chain 
size (Figure 5a). If the value of Tc is such that 
"r R < z e < w o 1N3,  it is possible to single out three different 
regimes of changes in R(t). At t<<z~, the radius of gyration 
virtually remains constant, R~-Ro . In the vicinity of 
t =%, a relatively narrow range of exponential growth 
exists, R( t )~  Ao(Nwoz~) 1/5 exp (t/5%). These two regimes 
correspond to the first kinetically controlled reaction 
stage. Finally, at t >> t* we have R(t) ~ AoN1/5(Wot) 4/15 as 
for the case for a completely diffusion-controlled reaction 
(Figure 5b, curve 3). 

When K¢<< woN-3,  the irreversible chain uncoiling is 
determined from the beginning to the end by a kinetically 
controlled chemical reaction. Equation (11) describes 
relaxation of R only under the condition R << R~q, but for 
the case being considered it will have the form: 

dR 
( dt + E[R--  Rcq(t)] = 0 (22) 

where E,,~kT/R2a(t) is the coefficient of coil elasticity 
for small deviations from the equilibrium. Since 
Ke<<woN-a<~E/(, the reaction proceeds so slowly that 
the coil radius of gyration changes in a quasi-equilibrium 
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Figure 5 Time dependence of chain rigidity and size for the case when 
the initial reaction stage (a) and (b) or the whole reaction (c) is controlled 
by chemical kinetics. The time constant % increases from (a) to (c). 
Values having the dimensionality of length are referred to Ao and time 
is referred to w o 1. See Fioure  2 for the description of curves 1-3 

manner, R(t)"~ Req(t ) = R o exp (½Ket) (Figure 5c, curve 
2,3). If the chemical reaction is induced by sample 
irradiation, then by changing its intensity the value of 
K c may be varied over a wide range. In this case the 
dynamics of chain stretching should change as shown in 
Figure 5a-c. 

Effect o f  viscosity change during the reaction 
So far we have considered only the uncoiling of the 

polymer chain in a medium with a constant viscosity 17. 
If the chemical reaction proceeds in a condensed polymer 
system, relatively concentrated solution or melt, and the 

Ya. Gotlib and L. I. Klushin 

increase in the length of rigid segments proceeds in all 
polymer chains and not only in one 'labelled' macro- 
molecule, then in the course of the reaction the viscosity 
of the system increases. It is known that the effective 
viscosity controlling the rotational mobility in relatively 
concentrated solutions of rigid rods is r/~ 17o(cA3) 2 where 
~/o is the solvent viscosity, c is the number of rods in unit 
volume and A is the rod length1°' 11. This relationship is 
valid at concentrations A-  la-2 >>c >>A- 3. Here, and in 
the following discussion, the system is assumed to be 
isotropic and the possibility of liquid crystalline ordering 
is not considered. The problem of the effective viscosity 
controlling the local orientational mobility in a concen- 
trated solution of chains consisting of rigid segments is 
intricate, there being no rigorous theory at present. It is 
reasonable to assume that this viscosity is not lower than 
that in a solution with the same concentration of rods 
not joined into a chain. We conjecture that 17 scales as 
I7 ,,~ 17o(cA3) ~, and ~ = 2 will be used as the lower estimate. 
In the simplest approximation, it will also be assumed 
that the same value of 17 controls a larger scale relaxation 
of the coil radius of gyration R. This implies that the 
reptation of the chain as a whole is not taken into 
account. 

At a constant chain concentration in the system, the 
concentration of segments c decreases with increasing 
mean length of the segment: 

Ao 
C=Co ~ 

Hence, the viscosity 17 changes as 17~17o(A/Ao) 2~ where 
17o is the local viscosity of the system at the beginning of 
the reaction. 

The kinetic equations (10) and (11) retain their form, 
but an additional factor, 17o/17 = (n/N) 2~, appears on their 
right-hand sides. By this factor, the retardation of all 
relaxation processes due to increasing viscosity is taken 
into account. As will be shown below, the conditions: 

R2 << R~q; f ( A / R ) ~  1 (23) 

are still valid, as in the case 17 = const. Hence, it is possible 
to pass to simpler kinetic equations: 

dn 
- wofX-3n4(n/N)2~ (24) 

dt 

dR 
- -  = WoflN- 3n- 1L(L/R)3 + P(n/N) z~ (25) 
dt 

Excluding time t from equations (24) and (25) we obtain 
the relationship between A = L/n and R: 

R=L[ (R~) '+P+  f l4~  p A4-AglX/('+P)~4 j (26) 

This equation is valid regardless of whether the viscosity 
changes or not during the reaction under the condition 
that the orientational rearrangement of segments and the 
relaxation of chain radius of gyration are controlled by 
the same value of viscosity. Hence, the validity of 
inequalities (23) relating the values of R and A, being 
established for the 17 = const, is also retained in the case 
when viscosity increases during the reaction. 

Equation (24) shows that the mean length of the 
segment A increases with time as: 

A = Ao[1 + f (3  + 2~)Wot] 1/(3 + 2a) 
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Taking  into account  the fact that  ~t/> 2 we obta in  a very 
marked  re ta rda t ion  of the rigidity growth  with t ime 
A(t)<<.Ao(wot) 1/7. The  t ime of the comple t ion  of the 
react ion is found to be very s t rongly dependent  on the 
degree of polymer iza t ion  of  the chain t¢omp -,~ N 3 + 2a ~ N 7. 
In  practice,  this means  that  in a given system the react ion 
is frozen in a certain stage, and  it m a y  p rove  to be 
impossible to observe complete  uncoiling of long chains 
in the experiment .  

F o r  this case the form of the dependencies  A(t)  and 
R(t)  is similar to those in Figure 2 (curves 1, 2 and  4), 
but  the logar i thmic  scale a long the axis t changes:  at 
~ = 2  we have TR~'Wo1N7/2; Teomp,~wolN 7. 

The  above  quali tat ive evaluat ions  show that  the 
increasing viscosity of  the med ium during the react ion 
leading to the increasing of  chain rigidity can profoundly  
affect bo th  the kinetics of  local stiffening and the rate of  
global  chain swelling. 
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